Class X

MATHEMATICS
SET A
SECTION A

Time : 1 12 hrs
Marks : 40
$10 \times 1=10$

1. Two chords $A B$ and $C D$ of a circle intersect at E such that $A E=2.4 \mathrm{~cm}, B E=3.2 \mathrm{~cm}$ and $C E=1.6 \mathrm{~cm}$. The length of $D E$ is
a) 1.6
b) 3.2
c) 4.8
d) 6.4
2. A tangent $P Q$ at a point P of a circle of radius 6 cm meets a line through the centre O. If $C D$ is the tangent to the circle at a point E and $P A=14 \mathrm{~cm}$ then perimeter of $\triangle P C D$ is
a) $4 \sqrt{10} \mathrm{~cm}$
b) $6 \sqrt{10} \mathrm{~cm}$
c) $5 \sqrt{10} \mathrm{~cm}$
d) $7 \sqrt{10} \mathrm{~cm}$
3. In figure, AT is a tangent to the circle with centre O such that $O T=4 \mathrm{~cm}$ and $\angle O T A=30^{\circ}$. Then, AT is equal to
a) 4 cm
b) 2 cm
c) $2 \sqrt{3} \mathrm{~cm}$
d) $4 \sqrt{3} \mathrm{~cm}$

4. If radii of two concentric circles are 4 cm and 5 cm , then length of each chord of one circle which is tangent to the other circle, is
a) 3 cm
b) 6 cm
c) 9 cm
d) 1 cm
5. If in $\triangle A B C$ and $\triangle D E F, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar, when
a) $\angle B=\angle E$
b) $\angle \mathrm{A}=\angle \mathrm{D}$
c) $\angle \mathrm{B}=\angle \mathrm{D}$
d) $\angle \mathrm{A}=\angle \mathrm{F}$
6. In figure if $O A=5 \mathrm{~cm}, O M=3 \mathrm{~cm}$, the length of chord $A B($ in cm$)$ is
a) 8
b) 10
c) 6
d) 4

7. At one end A of a diameter $A B$ of a circle of radius 5 cm , tangent $X A Y$ is drawn to the circle. The length of the chord CD parallel to XY and at a distance 8 cm from A, is
a) 4 cm
b) 5 cm
c) 6 cm
d) 8 cm
8. In figure $A B$ is a chord of the circle and $A O C$ is its diameter such that $\angle A C B=50^{\circ}$. If $A T$ is the tangent to the circle at the point A , then $\angle \mathrm{BA} T$ is equal to
a) 45°
b) 60°
c) 50°
d) 55°

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as :
a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)
b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A)
c) Assertion (A) is true but Reason (R) is false.
d) Assertion (A) is false but Reason (R) is true.
e) Both Assertion (A) and Reason (R) are false.
9. Assertion (A) : D and E are points on the sides $A B$ and $A C$ of a $\triangle A B C$ such that $A B=10.8 \mathrm{~cm}, A D=6.3 \mathrm{~cm}, A C=9.6 \mathrm{~cm}$ and $E C=4 \mathrm{~cm}$ then $D E$ is parallel to $B C$.

Reason (R) : If a line is drawn parallel to one side of a triangle then it divides the other two sides in the same ratio.
10. Assertion (A) : $A B$ is a diameter of a circle and $A C$ is its chord, such that $\angle B A C=30^{\circ}$ and $\angle B C D=30^{\circ}$.

Reason (R) : Angle between tangent and chord is equal to angle made by chord in the alternative segment.

SECTION - B

$2 \times 2=4$
11. In figure, O is the centre of a circle. $P T$ and $P Q$ are tangents to the circle from an external point P . If $\angle \mathrm{TPQ}=70^{\circ}$, find $\angle \mathrm{TRQ}$.

In figure, a triangle $A B C$ is drawn to circumscribe a circle of radius 3 cm , such that the segments BD and $D C$ are respectively of lengths 6 cm and 9 cm . If the area of triangle $A B C$ is $54 \mathrm{~cm}^{2}$, then find the lengths of sides $A B$ and $A C$.

12. In the given figure, if $A B C D$ is a trapezium in which $A B\|C D\| E D$, then prove that $\frac{A E}{E D}=\frac{B F}{F C}$.

SECTION - C
 SETION -

$4 \times 3=12$
13.

In the given figure, BOA is a diameter of a circle and the tangent at a point P meets $B A$ when produced at T. If $\angle \mathrm{PBO}=30^{\circ}$, what is the measure of $\angle \mathrm{PTA}$?
14. PB is a tangent to the circle with centre O to B . $A B$ is a chord of length 24 cm at a distance of 5 cm from the centre. If the tangent is of length 20 cm , find the length of PO.

15. In the given figure A, B and C are points on $O P$, $O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C|\mid P R$. Prove that $B C \| Q R$.

16. $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O . Show that $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$.

OR

In the given figure, $A B=A C$. E is a point on $C B$ produced. If $A D$ is perpendicular to $B C$ and $E F$ perpendicular to $A C$. Prove that $\triangle \mathrm{ABD}$ is similar to $\triangle \mathrm{CEF}$.

M-X -R3A
17. In figure below, $\frac{\mathrm{QR}}{\mathrm{QT}}=\frac{\mathrm{QS}}{\mathrm{PR}}$ and $\angle 1=\angle 2$. Show that $\triangle \mathrm{PQS} \sim \Delta \mathrm{TQR}$.
18.

In the given figure, if $P Q R S$ is a parallelogram and $A B \| P S$, then prove that $O C \| S R$.

OR

In given figure, $/ \| \mathrm{m}$ and line segments AB, CD and
$E F$ are concurrent at point P. Prove that $\frac{A E}{B F}=\frac{A C}{B D}=\frac{C E}{F D}$.

SECTION - E

19. Vijay is trying to find the average height of a tower near his house. He is using the properties of similar triangles. The height of Vijay's house if 20 m when Vijay's house casts a shadow 10 m long on the ground. At the same time, the tower casts a shadow 50 m long on the ground and the house of Ajay casts 20 m shadow on the ground.

Based on the above information, answer the following questions.
i) What is the height of the tower?

OR

What will be the length of the shadow of the tower when Vijay's house casts a shadow of 12 m ?
ii) When the tower casts a shadow of 40 m , same time what will be the length of the shadow of Ajay's house?
iii) When the tower casts a shadow of 40 m , same time what will be the length of the shadow of Vijay's house?

REVISION TEST SERIES - 3

Class X

MATHEMATICS
SET B
SECTION A

Time : $1^{11 / 2}$ hrs
Marks : 40
$10 \times 1=10$

1. If in two $\triangle A B C$ and $\triangle P Q R, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
a) $\triangle \mathrm{PQR} \sim \Delta \mathrm{CAB}$
b) $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$
c) $\triangle \mathrm{CBA} \sim \Delta \mathrm{PQR}$
d) $\quad \triangle \mathrm{BCA} \sim \triangle \mathrm{PQR}$
2. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$ and $\triangle \mathrm{ABC}$ is not similar to $\triangle \mathrm{DEF}$, then which of the following is not true?
a) $B C . E F=A C . F D$
b) $A B . E F=A C . D E$
c) $B C . D E=A B . E F$
d) $B C \cdot D E=A B . F D$
3. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{F}=\angle \mathrm{C}$ and $\mathrm{AB}=3 \mathrm{DE}$. Then, the two triangles are
a) congruent but not similar
b) similar but not congruent
c) neither congruent nor similar
d) congruent as well as similar
4. In figure if $O C=9 \mathrm{~cm}$, and $O B=15 \mathrm{~cm}$, then find $B C+B D$
a) 18 cm
b) 12 cm
c) 24 cm
d) 36 cm

5. In figure PT is a tangent to a circle with centre O and $\angle \mathrm{TPO}=25^{\circ}$, then the measure of x is
a) 120°
b) 125°
c) 110°
d) 115°

6. Two tangents are drawn from an external point P (as given in figure) such that $\angle O B A=10^{\circ}$. Then $\angle \mathrm{BPA}$ is
a) 10°
b) 20°
c) 30°
d) 40°

7. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{DF}=7.5 \mathrm{~cm}$. Then, which of the following is true?
a) $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{~F}=50^{\circ}$
b) $\mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{~F}=100^{\circ}$
c) $E F=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ}$
d) $\mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ}$
8. $A P B$ is a tangent to a circle with centre O, at point P. If $\angle \mathrm{QPB}=50^{\circ}$, then the measure of $\angle \mathrm{POQ}$ is
a) 120°
b) 100°
c) 140°
d) 170°

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as :
a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)
b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A)
c) Assertion (A) is true but Reason (R) is false.
d) Assertion (A) is false but Reason (R) is true.
e) Both Assertion (A) and Reason (R) are false.
9. Assertion (A) : The angle between two tangents to a circle may be 0°.

Reason (R) : This may be possible only when both tangent lines coincide or are parallel to each other.
10. Assertion (A) : D and E are points on the sides $A B$ and $A C$ of a $\triangle A B C$ such that $D E \| B C$ then the value of x is 11 , when $A D=4 \mathrm{~cm}, D B=(x-4) \mathrm{cm}, A E=8 \mathrm{~cm}$ and $E C=(3 x-19) \mathrm{cm}$.
Reason (R) : If a line divides any two sides of a triangle in the same ratio then it is parallel to the third side.

SECTION - B
$2 \times 2=4$
11. In the given figure, if $B C=4.5 \mathrm{~cm}$, find the length of $A B$.

OR

In figure, two tangents RQ and RP are drawn form an external point R to the circle with centre O. If $\angle P R Q=120^{\circ}$, then prove that $O R=P R+R Q$.
12. In the given figure, if $A B \| D C$, find the value of x.

SECTION - C

13.

In figure, O is the centre of a circle. PT and PQ are tangents to the circle from an external point P. If $\angle \mathrm{TPQ}=70^{\circ}$, find $\angle T R Q$.
14. In figure, PQ , is a chord of length 16 cm , of a circle of radius 10 cm , the tangents at P and Q intersect at a point T.

Find the length of TP.
15.

In the given figure $C D \| L A$ and $D E \| A C$.
Find the length of $C L$, if $B E=4 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$.
16. In the given figure, two triangles $A B C$ and $D B C$ lie on the same side of $B C$ such that $P Q \| B A$ and $P R \| B D$. Prove that $Q R \| A D$.

OR

In the given figure, $D B \perp B C, D E \perp A B$ and $A C \perp B C$. Prove that $\frac{B E}{D E}=\frac{A C}{B C}$.

SECTION - C

$2 \times 5=10$
17. In the given figure, $R Q$ and $T P$ are perpendicular to $P Q$, also $T S$ perpendicular to $P R$. Prove that ST.RQ = PS.PQ.

18. In figure, two equal circles with centres O and O^{\prime}, touch each other at X . OO' produced meet the circle with centre O^{\prime} at A . Find the value of $\frac{\mathrm{DO}^{\prime}}{\mathrm{CO}^{\prime}}$.

OR
In a figure the common tangents, AB and CD to two circles with centres O and O^{\prime} intersect at E . Prove that the points O, E and O^{\prime} are collinear.

SECTION - E

19. Ramesh places a mirror on level ground to determine the height of a pole (with traffic light fired on it). He stands at a certain distance so that he can see the top of the pole reflected from the mirror. Ramesh's eye level is 1.5 m above the ground. The distance of Ramesh and the pole from the mirror are 1.8 m and 6 m respectively.

i) Which criterion of similarity is applicable to similar triangles?
ii) What is the height of the pole?

OR

Now Ramesh moves behind such that distance between pole and Ramesh is 13 meters. He places mirror between him and pole to see the reflection of light in right position. What is the distance between mirror and Ramesh?
iii) What is the distance between mirror and pole?

